The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1

Author:

Shah Khalid,Russinova Eugenia,Gadella Theodorus W.J.,Willemse Joost,de Vries Sacco C.

Abstract

The AtSERK1 protein is a plasma membrane-located LRR receptor-like serine threonine kinase that is transiently expressed during plant embryogenesis. Our results show that AtSERK1 interacts with the kinase-associated protein phosphatase (KAPP) in vitro. The kinase interaction (KI) domain of KAPP does not interact with a catalytically inactive kinase mutant. Using mutantAtSERK1 proteins in which Thr 462, Thr 463, and Thr 468 in the A-loop of the AtSERK1 kinase domain were replaced by alanines, we show that phosphorylation status of the receptor is involved in interaction with KAPP. KAPP and AtSERK1 cDNAs were fused to two different variants of green fluorescent protein (GFP), the yellow fluorescent protein (YFP) or the cyan fluorescent protein (CFP). Both KAPP and AtSERK1 proteins are found at the plasma membrane. Our results show that AtSERK1-CFP becomes sequestered into intracellular vesicles when transiently coexpressed with KAPP-YFP proteins. AtSERK1T463A-CFP andAtSERK13T→A-CFP proteins were partially sequestered intracellularly in the absence of KAPP-YFP protein, suggesting an active role for KAPP dephosphorylation of threonine residues in theAtSERK1 A-loop in receptor internalization. The interaction between the KAPP-CFP/YFP and AtSERK1-CFP/YFP fusion proteins was investigated with fluorescence spectral imaging microscopy (FSPIM). Our results show that AtSERK1-CFP and KAPP-YFP proteins are colocalized at the plasma membrane but only show fluorescence energy transfer (FRET) indicative of physical interaction in intracellular vesicles. These results suggest that KAPP is an integral part of theAtSERK1 endocytosis mechanism.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3