Mice carrying a humanized Foxp2 knock-in allele show region-specific shifts of striatal Foxp2 expression levels

Author:

Schreiweis C,Irinopoulou T,Vieth B,Laddada L,Oury F,Burguière E,Enard W,Groszer M

Abstract

ABSTRACTGenetic and clinical studies of speech and language disorders are providing starting points to unravel underlying neurobiological mechanisms. The gene encoding the transcription factor FOXP2 has been the first example of a gene involved in the development and evolution of this human-specific trait. A number of autosomal-dominant FOXP2 mutations are associated with developmental speech and language deficits indicating that gene dosage plays an important role in the disorder. Comparative genomics studies suggest that two human-specific amino acid substitutions in FOXP2 might have been positively selected during human evolution. A knock-in mouse model carrying these two amino acid changes in the endogenous mouse Foxp2 gene (Foxp2hum/hum) shows profound changes in striatum-dependent behaviour and neurophysiology, supporting a functional role for these changes. However, how this affects Foxp2 expression patterns in different striatal regions and compartments has not been assessed. Here, we characterized Foxp2 protein expression patterns in adult striatal tissue in Foxp2hum/hum mice. Consistent with prior reports in wildtype mice, we find that striatal neurons in Foxp2hum/hum mice and wildtype littermates express Foxp2 in a range from low to high levels. However, we observe a shift towards more cells with higher Foxp2 expression levels in Foxp2hum/hum mice, significantly depending on the striatal region and the compartment. As potential behavioural readout of these shifts in Foxp2 levels across striatal neurons, we employed a morphine sensitization assay. While we did not detect differences in morphine-induced hyperlocomotion during acute treatment, there was an attenuated hyperlocomotion plateau during sensitization in Foxp2hum/hum mice. Taken together, these results suggest that the humanized Foxp2 allele in a mouse background is associated with a shift in striatal Foxp2 protein expression pattern.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3