Stimulus-responsive Self-Assembly of Protein-Based Fractals by Computational Design

Author:

Hernández Nancy E.,Hansen William A.,Zhu Denzel,Shea Maria E.,Khalid Marium,Manichev Viacheslav,Putnins Matthew,Chen Muyuan,Dodge Anthony G.,Yang Lu,Marrero-Berríos Ileana,Banal Melissa,Rechani Phillip,Gustafsson Torgny,Feldman Leonard C.,Lee Sang-Hyuk,Wackett Lawrence P.,Dai Wei,Khare Sagar D.ORCID

Abstract

AbstractFractal topologies, which are statistically self-similar over multiple length scales, are pervasive in nature. The recurrence of patterns at increasing length scales in fractal-shaped branched objects, e.g., trees, lungs, and sponges, results in high effective surface areas, and provides key functional advantages, e.g., for molecular trapping and exchange. Mimicking these topologies in designed protein-based assemblies will provide access to novel classes of functional biomaterials for wide ranging applications. Here we describe a computational design approach for the reversible self-assembly of proteins into tunable supramolecular fractal-like topologies in response to phosphorylation. Computationally-guided atomic-resolution modeling of fusions of symmetric, oligomeric proteins with Src homology 2 (SH2) binding domain and its phosphorylatable ligand peptide was used to design iterative branching leading to assembly formation by two enzymes of the atrazine degradation pathway. Structural characterization using various microscopy techniques and Cryo-electron tomography revealed a variety of dendritic, hyperbranched, and sponge-like topologies which are self-similar over three decades (~10nm-10μm) of length scale, in agreement with models from multi-scale computational simulations. Control over assembly topology and formation dynamics is demonstrated. Owing to their sponge-like structure on the nanoscale, fractal assemblies are capable of efficient and phosphorylation-dependent reversible macromolecular capture. The described design framework should enable the construction of a variety of novel, spatiotemporally responsive biomaterials featuring fractal topologies.One Sentence SummaryWe report a computationally-guided bottom up design approach for constructing fractal-shaped protein assemblies for efficient molecular capture.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3