Quantifying the effect of experimental perturbations at single-cell resolution

Author:

Burkhardt Daniel B.ORCID,Stanley Jay S.,Tong AlexanderORCID,Perdigoto Ana LuisaORCID,Gigante Scott A.ORCID,Herold Kevan C.ORCID,Wolf GuyORCID,Giraldez Antonio J.ORCID,van Dijk DavidORCID,Krishnaswamy SmitaORCID

Abstract

Abstract Current methods for comparing scRNA-seq datasets collected in multiple conditions focus on discrete regions of the transcriptional state space, such as clusters of cells. Here, we quantify the effects of perturbations at the single-cell level using a continuous measure of the effect of a perturbation across the transcriptomic space. We describe this space as a manifold and develop a relative likelihood estimate of observing each cell in each of the experimental conditions using graph signal processing. This likelihood estimate can be used to identify cell populations specifically affected by a perturbation. We also develop vertex frequency clustering to extract populations of affected cells at the level of granularity that matches the perturbation response. The accuracy of our algorithm to identify clusters of cells that are enriched or depleted in each condition is on average 57% higher than the next best-performing algorithm tested. Gene signatures derived from these clusters are more accurate compared to six alternative algorithms in ground-truth comparisons.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3