Polyglutamine-related aggregates serve as a potent antigen source for cross presentation by dendritic cells

Author:

Tabachnick-Cherny Shira,Berko Dikla,Pinto Sivan,Curato CaterinaORCID,Wolf YochaiORCID,Porat ZivORCID,Karmona Rotem,Tirosh Boaz,Jung SteffenORCID,Navon AmiORCID

Abstract

AbstractProtective MHC-I dependent immune responses require an overlap between repertoires of proteins directly presented on target cells and cross-presented by professional antigen presenting cells (APC), specifically dendritic cells (DCs). How stable proteins that rely on DRiPs for direct presentation are captured for cell-to-cell transfer remains enigmatic. Here we address this issue using a combination of in vitro and in vivo approaches involving stable and unstable versions of ovalbumin model antigens displaying DRiP-dependent and -independent antigen presentation, respectively. Apoptosis, but not necrosis of donor cells was found associated with robust p62-dependent global protein aggregate formation and captured stable proteins permissive for DC cross-presentation. Potency of aggregates to serve as antigen source was directly demonstrated using polyglutamine-equipped model substrates. Collectively, our data implicate global protein aggregation in apoptotic cells as a mechanism that ensures the overlap between MHC-I epitopes presented directly or cross-presented by APC and demonstrate the unusual ability of DC to process stable protein aggregates.SummaryProtective T cell immunity relies on the overlap of the antigen repertoire expressed by cells and the repertoire presented by dendritic cells that are required to trigger naïve T cells. We suggest a mechanism that contributes to ensure this antigenic overlap. Our findings demonstrate that upon apoptosis stable proteins are aggregated in p62-dependent pathway and that dendritic cells are capable to efficiently process these aggregates to retrieve antigens for T cell stimulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3