Molecular chaperones accelerate the evolution of their protein clients in yeast

Author:

Alvarez-Ponce David,Aguilar-Rodríguez José,Fares Mario A.

Abstract

ABSTRACTProtein stability is a major constraint on protein evolution. Molecular chaperones, also known as heat-shock proteins, can relax this constraint and promote protein evolution by diminishing the deleterious effect of mutations on protein stability and folding. This effect, however, has only been stablished for a few chaperones. Here, we use a comprehensive chaperone-protein interaction network to study the effect of all yeast chaperones on the evolution of their protein substrates, that is, their clients. In particular, we analyze how yeast chaperones affect the evolutionary rates of their clients at two very different evolutionary time scales. We first study the effect of chaperone-mediated folding on protein evolution over the evolutionary divergence of Saccharomyces cerevisiae and S. paradoxus. We then test whether yeast chaperones have left a similar signature on the patterns of standing genetic variation found in modern wild and domesticated strains of S. cerevisiae. We find that genes encoding chaperone clients have diverged faster than genes encoding nonclient proteins when controlling for their number of protein-protein interactions. We also find that genes encoding client proteins have accumulated more intra-specific genetic diversity than those encoding nonclient proteins. In a number of multivariate analyses, controlling by other well-known factors that affect protein evolution, we find that chaperone dependence explains the largest fraction of the observed variance in the rate of evolution at both evolutionary time scales. Chaperones affecting rates of protein evolution mostly belong to two major chaperone families: Hsp70s and Hsp90s. Our analyses show that protein chaperones, by virtue of their ability to buffer destabilizing mutations and their role in modulating protein genotype-phenotype maps, have a considerable accelerating effect on protein evolution.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3