Author:
Rekhter Dmitrij,Lüdke Daniel,Ding Yuli,Feussner Kirstin,Zienkiewicz Krzysztof,Lipka Volker,Wiermer Marcel,Zhang Yuelin,Feussner Ivo
Abstract
AbstractThe phytohormone salicylic acid (SA) is a central regulator of plant immunity. Despite such functional importance, our knowledge of its biosynthesis is incomplete. Previous work showed that SA is synthesized from chorismic acid in plastids. The bulk of pathogen-induced SA derives from isochorismate generated by the catalytic activity of ISOCHORISMATE SYNTHASE1 (ICS1). How and in which cellular compartment isochorismate is converted to SA is unknown. Here we show that the pathway downstream of isochorismate requires only two additional proteins: the plastidial isochorismate exporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5) and the cytosolic amido-transferase AvrPphB SUSCEPTIBLE3 (PBS3). PBS3 catalyzes the conjugation of glutamate to isochorismate. The reaction product isochorismate-9-glutamate spontaneously decomposes into enolpyruvyl-N-glutamate and SA. This previously unknown reaction mechanism appears to be conserved throughout the plant kingdom.One Sentence SummarySalicylic acid is synthesized via isochorismate-9-glutamate by PBS3.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献