Abstract
Flight is a triumph of evolution that enabled the radiation and success of birds. A crucial step was the development of forelimb flight feathers that may have evolved for courtship or territorial displays in ancestral theropod dinosaurs. Classical tissue recombination experiments performed in the chick embryo provide evidence that signals operating during early limb development specify the position and identity of feathers. Here we show that a positional information gradient of Sonic hedgehog (Shh) signalling in the embryonic chick wing bud specifies the pattern of adult flight feathers in a defined spatial and temporal sequence that reflects their different identities. We reveal that the Shh signalling gradient is interpreted into specific patterns of flight feather-associated gene expression. Our data suggests that flight feather evolution involved the co-option of the pre-existing digit patterning mechanism and therefore uncovers an embryonic process that played a fundamental step in the evolution of avian flight.
Publisher
Cold Spring Harbor Laboratory