Author:
Liu Haiming,Luo Jiaohua,Guillory Bobby,Chen Ji-an,Zang Pu,Yoeli Jordan K.,Hernandez Yamileth,Lee Ian (In-gi),Anderson Barbara,Storie Mackenzie,Tewnion Alison,Garcia Jose M.
Abstract
ABSTRACTAdipose tissue (AT) atrophy is a hallmark of cancer cachexia contributing to increased morbidity/mortality. Ghrelin has been proposed as a treatment for cancer cachexia partly by preventing AT atrophy. However, the mechanisms mediating ghrelin’s effects are incompletely understood, including the extent to which its only known receptor, GHSR-1a, is required for these effects. This study characterizes the pathways involved in AT atrophy in the Lewis Lung Carcinoma (LLC)-induced cachexia model and those mediating the effects of ghrelin in Ghsr+/+ and Ghsr−/− mice. We show that LLC causes AT atrophy by inducing anorexia, and increasing AT inflammation, thermogenesis and energy expenditure. These changes were greater in Ghsr−/−. Ghrelin administration prevented LLC-induced anorexia only in Ghsr+/+, but prevented WAT inflammation and atrophy in both genotypes, although its effects were greater in Ghsr+/+. LLC-induced increases in BAT inflammation, WAT and BAT thermogenesis, and energy expenditure were not affected by ghrelin. In conclusion, ghrelin ameliorates WAT inflammation, fat atrophy and anorexia in LLC-induced cachexia. GHSR-1a is required for ghrelin’s orexigenic effect but not for its anti-inflammatory or fat-sparing effects.
Publisher
Cold Spring Harbor Laboratory