Gene expression profiles based flux balance model to predict the carbon source for Bacillus subtilis

Author:

Thanamit Kulwadee,Hoerhold Franziska,Oswald Marcus,Koenig Rainer

Abstract

ABSTRACTFinding drug targets for antimicrobial treatment is a central focus in biomedical research. To discover new drug targets, we developed a method to identify which nutrients are essential for microorganisms. Using 13C labeled metabolites to infer metabolic fluxes is the most informative way to infer metabolic fluxes to date. However, the data can get difficult to acquire in complicated environments, for example, if the pathogen homes in host cells. Although data from gene expression profiling is less informative compared to metabolic tracer derived data, its generation is less laborious, and may still provide the relevant information. Besides this, metabolic fluxes have been successfully predicted by flux balance analysis (FBA). We developed an FBA based approach using the stoichiometric knowledge of the metabolic reactions of a cell combining them with expression profiles of the coding genes. We aimed to identify essential drug targets for specific nutritional uptakes of microorganisms. As a case study, we predicted each single carbon source out of a pool of eight different carbon sources for B. subtilis based on gene expression profiles. The models were in good agreement to models basing on 13C metabolic flux data of the same conditions. We could well predict every carbon source. Later, we applied successfully the model to unseen data from a study in which the carbon source was shifted from glucose to malate and vice versa. Technically, we present a new and fast method to reduce thermodynamically infeasible loops, which is a necessary preprocessing step for such model-building algorithms.SIGNIFICANCEIdentifying metabolic fluxes using 13C labeled tracers is the most informative way to gain insight into metabolic fluxes. However, obtaining the data can be laborious and challenging in a complex environment. Though transcriptional data is an indirect mean to estimate the fluxes, it can help to identify this. Here, we developed a new method employing constraint-based modeling to predict metabolic fluxes embedding gene expression profiles in a linear regression model. As a case study, we used the data from Bacillus subtilis grown under different carbon sources. We could well predict the correct carbon source. Additionally, we established a novel and fast method to remove thermodynamically infeasible loops.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3