Abstract
ABSTRACTBackgroundAlveolar echinococcosis (AE), caused by the metacestode larval stage of the fox-tapeworm Echinococcus multilocularis, is a chronic zoonosis associated with significant modulation of the host immune response. A role of regulatory T-cells (Treg) in generating an immunosuppressive environment around the metacestode during chronic disease has been reported, but the molecular mechanisms of Treg induction by E. multilocularis remain elusive so far.Methodology/Principal findingsWe herein demonstrate that excretory/secretory (E/S) products of the E. multilocularis metacestode promote the formation of Foxp3+ Treg from CD4+ T-cells in vitro in a TGF-β-dependent manner. We also show that host T-cells secrete elevated levels of the immunosuppressive cytokine IL-10 in response to metacestode E/S products. Within the E/S fraction of the metacestode we identified an E. multilocularis activin A homolog (EmACT) that displays significant similarities to mammalian Transforming Growth Factor-β (TGF-β)/activin subfamily members. EmACT obtained from heterologous expression promoted host TGF-β-driven CD4+ Foxp3+ Treg conversion in vitro. Furthermore, like in the case of metacestode E/S products, EmACT-treated CD4+ T-cells secreted higher levels of IL-10. These observations suggest a contribution of EmACT in the in vitro expansion of Foxp3+ Treg by the E. multilocularis metacestode. Using infection experiments we show that intraperitoneally injected metacestode tissue expands host Foxp3+ Treg, confirming the expansion of this cell type in vivo during parasite establishment.Conclusions/SignificanceIn conclusion, we herein show that E. multilocularis larvae secrete a factor with clear structural and functional homologies to mammalian activin A. Like its mammalian homolog, this protein induces the secretion of IL-10 by T-cells and contributes to the expansion of TGF-β-driven Foxp3+ Treg, a cell type that has been reported crucial for generating a tolerogenic environment to support parasite establishment and proliferation.AUTHOR SUMMARYThe metacestode larval stage of the tapeworm E. multilocularis grows infiltratively, like a malignant tumor, within the organs of its human host, thus causing the lethal disease alveolar echinococcosis (AE). Immunosuppression plays an important role in both survival and proliferation of the metacestode, which mainly depends on factors that are released by the parasite. These parasite-derived molecules are potential targets for developing new anti-echinococcosis drugs and/or improving the effectiveness of current therapies. Additionally, an optimized use of such factors could help minimize pathologies resulting from over-reactive immune responses, like allergies and autoimmune diseases. The authors herein demonstrate that the E. multilocularis metacestode releases a protein, EmACT, with significant homology to activin A, a cytokine that might support host TGF-β in its ability to induce the generation of immunosuppressive regulatory T-cells (Treg) in mammals. Like its mammalian counterpart, EmACT was associated with the expansion of TGF-β-induced Treg and stimulated the release of elevated amounts of immunosuppressive IL-10 by CD4+ T-cells. The authors also demonstrate that Treg are locally expanded by the metacestode during an infection of mice. These data confirm an important role of Treg for parasite establishment and growth during AE and suggest a potential role of EmACT in the expansion of these immunosuppressive cells around the parasite.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献