Rapid diversification of Pseudomonas aeruginosa in cystic fibrosis lung-like conditions

Author:

Schick Alana,Kassen Rees

Abstract

AbstractChronic infection of the cystic fibrosis (CF) airway by the opportunistic pathogen Pseudomonas aeruginosa is the leading cause of morbidity and mortality for adult CF patients. Prolonged infections are accompanied by adaptation of P. aeruginosa to the unique conditions of the CF lung environment as well as marked diversification of the pathogen into phenotypically and genetically distinct strains that can coexist for years within a patient. Little is known, however, about the causes of this diversification and its impact on patient health. Here, we show experimentally that, consistent with ecological theory of diversification, the nutritional conditions of the CF airway can cause rapid and extensive diversification of P. aeruginosa. The increased viscosity associated with the thick mucous layer in the CF airway had little impact on within-population diversification but did promote divergence among populations. Notably, in vitro evolution recapitulated patho-adaptive traits thought to be hallmarks of chronic infection, including reduced motility and increased biofilm formation, and the range of phenotypes observed in a collection of clinical isolates. Our results suggest that nutritional complexity and reduced dispersal can drive evolutionary diversification of P. aeruginosa independent of other features of the CF lung such as an active immune system or the presence of competing microbial species. They also underscore the need to obtain diverse samples of P. aeruginosa when developing treatment plans. We suggest that diversification, by generating extensive phenotypic and genetic variation on which selection can act, may be a key first step in the transition from transient to chronic infection.Significance StatementChronic infection with the opportunistic pathogen Pseudomonas aeruginosa is the leading cause of lung transplant or death in cystic fibrosis patients. P. aeruginosa diversifies in the CF lung, although why this happens remains a mystery. We allowed P. aeruginosa to evolve in the laboratory under a range of conditions approximating the CF lung. The diversity of evolved populations was highest, and most closely resembled the range of phenotypes among clinical isolates, in environments resembling the spectrum of nutritional resources available in the CF lung. Our results point to the nutritional complexity of the CF lung as a major driver of diversification and they suggest that diversity could be important in the development of chronic infections.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3