Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury

Author:

Renthal WilliamORCID,Tochitsky Ivan,Yang Lite,Cheng Yung-Chih,Li Emmy,Kawaguchi Riki,Geschwind Daniel H.ORCID,Woolf Clifford J.

Abstract

SummaryPrimary somatosensory neurons are specialized to transmit specific types of sensory information through differences in cell size, myelination, and the expression of distinct receptors and ion channels, which together define their transcriptional and functional identity. By transcriptionally profiling sensory ganglia at single-cell resolution, we find that different somatosensory neuronal subtypes undergo a remarkably consistent and dramatic transcriptional response to peripheral nerve injury that both promotes axonal regeneration and suppresses cell identity. Successful axonal regeneration leads to a restoration of neuronal cell identity and the deactivation of the growth program. This injury-induced transcriptional reprogramming requires Atf3, a transcription factor which is induced rapidly after injury and is necessary for axonal regeneration and functional recovery. While Atf3 and other injury-induced transcription factors are known for their role in reprogramming cell fate, their function in mature neurons is likely to facilitate major adaptive changes in cell function in response to damaging environmental stimuli.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3