Abstract
SummaryPrimary somatosensory neurons are specialized to transmit specific types of sensory information through differences in cell size, myelination, and the expression of distinct receptors and ion channels, which together define their transcriptional and functional identity. By transcriptionally profiling sensory ganglia at single-cell resolution, we find that different somatosensory neuronal subtypes undergo a remarkably consistent and dramatic transcriptional response to peripheral nerve injury that both promotes axonal regeneration and suppresses cell identity. Successful axonal regeneration leads to a restoration of neuronal cell identity and the deactivation of the growth program. This injury-induced transcriptional reprogramming requires Atf3, a transcription factor which is induced rapidly after injury and is necessary for axonal regeneration and functional recovery. While Atf3 and other injury-induced transcription factors are known for their role in reprogramming cell fate, their function in mature neurons is likely to facilitate major adaptive changes in cell function in response to damaging environmental stimuli.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献