Visual intensity ratio modulates operant learning responses in larval zebrafish

Author:

Yang WenbinORCID,Meng Yutong,Li Danyang,Wen Quan

Abstract

AbstractLarval zebrafish is a promising vertebrate model for understanding neural mechanisms underlying learning and memory. Here, we report on a high-throughput operant learning system for zebrafish larvae and demonstrate that lower visual intensity ratio of the conditioned stimulus to the background can enhance learning ability, highlighted by several behavioral metrics. We further characterize the learning curves as well as memory extinction for each conditioned pattern. Finally, we show how this learning process developed from 7 days old to 10 days old zebrafish.HighlightsConditioned visual patterns with lower intensity ratio to the background elicited stronger operant learning responsesMemory extinction was modulated by the visual intensity ratio of the conditioned stimulus to the backgroundA high-throughput automated system for acquiring and analyzing behavioral data

Publisher

Cold Spring Harbor Laboratory

Reference30 articles.

1. The habenula is crucial for experience-dependent modification of fear responses in zebrafish

2. Agranoff, B. W. , and Davis, R. E (1968). “The use of fishes in studies on memory formation,” in The Central Nervous System and Fish Behavior (University of Chicago Press Chicago).

3. Cerebellar-Dependent Learning in Larval Zebrafish

4. Spatial and non-spatial visual discrimination learning in zebrafish ( Danio rerio )

5. References

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visual Contrast Modulates Operant Learning Responses in Larval Zebrafish;Frontiers in Behavioral Neuroscience;2019-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3