Trophic shift and the origin of birds

Author:

Wu YonghuaORCID

Abstract

AbstractBirds are characterized by evolutionary specializations of both locomotion (e.g., flapping flight) and digestive system (toothless, crop, and gizzard), while the potential selection pressures responsible for these evolutionary specializations remain unclear. Here we used a recently developed molecular phyloecological method to reconstruct the diets of the ancestral archosaur and of the common ancestor of living birds (CALB). Our results showed that the ancestral archosaur exhibited a predominant Darwinian selection of protein and fat digestion and absorption, whereas the CALB showed a marked enhanced selection of carbohydrate and fat digestion and absorption, suggesting a trophic shift from carnivory to herbivory (fruit, seed, and/or nut-eater) at the archosaur-to-bird transition. The evolutionary shift of the CALB to herbivory may have essentially made them become a low-level consumer and, consequently, subject to relatively high predation risk from potential predators such as gliding maniraptorans, from which birds descended. Under the relatively high predation pressure, ancestral birds with gliding capability may have then evolved not only flapping flight as a possible anti-predator strategy against gliding predatory maniraptorans but also the specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and minimizing predation risk. Our results suggest that the powered flight and specialized digestive system of birds may have evolved as a result of their tropic shift-associated predation pressure.

Publisher

Cold Spring Harbor Laboratory

Reference145 articles.

1. Adaptive Intrinsic Growth Rates: An Integration Across Taxa

2. Paleobiology of herbivorous dinosaurs;Annu Rev Earth Planet Sci,2014

3. Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage

4. Benton, M. J. 2015. Vertebrate Palaeontology. John Wiley & Sons, West Sussex.

5. Structure of the chromosomal gene and cDNAs coding for lactase-phlorizin hydrolase in humans with adult-type hypolactasia or persistence of lactase;Am J Hum Genet,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3