Visualization of Phase-Amplitude Coupling Using Rhythmic High-Frequency Activity

Author:

Hashimoto HiroakiORCID,Khoo Hui MingORCID,Yanagisawa Takufumi,Tani Naoki,Oshino Satoru,Kishima Haruhiko,Hirata MasayukiORCID

Abstract

AbstractObjectiveHigh-frequency activities (HFAs) and phase-amplitude coupling (PAC) are gaining attention as key neurophysiological biomarkers for studying human epilepsy. We aimed to clarify and visualize how HFAs are modulated by the phase of low-frequency bands during seizures.MethodsWe used intracranial electrodes to record seizures of symptomatic focal epilepsy (15 seizures in seven patients). Ripples (80–250 Hz), as representative of HFAs, were evaluated along with PAC. The synchronization index (SI), representing PAC, was used to analyze the coupling between the amplitude of ripples and the phase of lower frequencies. We created a video in which the intracranial electrode contacts were represented by circles that were scaled linearly to the power changes of ripple.ResultsThe main low frequency band modulating ictal-ripple activities was the θ band (4–8 Hz), and after completion of ictal-ripple burst, δ (1–4 Hz)-ripple PAC occurred. The video showed that fluctuation of the diameter of these circles indicated the rhythmic changes during significant high values of θ-ripple PAC.ConclusionsWe inferred that ripple activities occurring during seizure evolution were modulated by θ rhythm. In addition, we concluded that rhythmic circles’ fluctuation presented in the video represents the PAC phenomenon. Our video is thus a useful tool for understanding how ripple activity is modulated by the low-frequency phase in relation with PAC.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3