Quarantine and testing strategies in contact tracing for SARS-CoV-2

Author:

Quilty Billy JORCID,Clifford SamuelORCID,Flasche StefanORCID,Kucharski Adam J,Edmunds W John,

Abstract

SummaryPrevious work has indicated that contact tracing and isolation of index case and quarantine of potential secondary cases can, in concert with physical distancing measures, be an effective strategy for reducing transmission of SARS-CoV-2 (1). Currently, contacts traced manually through the NHS Test and Trace scheme in the UK are asked to self-isolate for 14 days from the day they were exposed to the index case, which represents the upper bound for the incubation period (2). However, following previous work on screening strategies for air travellers (3,4) it may be possible that this quarantine period could be reduced if combined with PCR testing. Adapting the simulation model for contact tracing, we find that quarantine periods of at least 10 days combined with a PCR test on day 9 may largely emulate the results from a 14-day quarantine period in terms of the averted transmission potential from secondary cases (72% (95%UI: 3%, 100%) vs 75% (4%, 100%), respectively). These results assume the delays from testing index cases’ and tracing their contacts are minimised (no longer than 4.5 days on average). If secondary cases are traced and quarantined 1 day earlier on average, shorter quarantine periods of 8 days with a test on day 7 (76% (7%, 100%)) approach parity with the 14 day quarantine period with a 1 day longer delay to the index cases’ test. However, the risk of false-negative PCR tests early in a traced case’s infectious period likely prevents the use of testing to reduce quarantine periods further than this, and testing immediately upon tracing, with release if negative, will avert just 17% of transmission potential on average. In conclusion, the use of PCR testing is an effective strategy for reducing quarantine periods for secondary cases, while still reducing transmission of SARS-CoV-2, especially if delays in the test and trace system can be reduced, and may improve quarantine compliance rates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3