Corticospinal neurons encode complex motor signals that are broadcast to dichotomous striatal circuits

Author:

Nelson Anders,Abdelmesih Brenda,Costa Rui M

Abstract

SummarySensorimotor cortex controls movement in part through direct projections to the spinal cord. Here we show that these corticospinal neurons (CSNs) possess axon collaterals that innervate many supraspinal brain regions critical for motor control, most prominently the main input to the basal ganglia, the striatum. Corticospinal neurons that innervate the striatum form more synapses on D1-than D2-striatal projection neurons (SPNs). This biased innervation strategy corresponds to functionally distinct patterns of termination in spinal cord. CSNs are strongly driven during a striatum-dependent sequential forelimb behavior, and often represent high level movement features that are not linearly related to kinematic output. Copies of these activity patterns are relayed in a balanced fashion to both D1 and D2 projection pathways. These results reveal a circuit logic by which motor cortex corticospinal neurons relay both kinematic-related and unrelated signals to distinct striatal and spinal cord pathways, where postsynaptic connectivity ultimately dictates motor specificity.HighlightsCorticospinal neurons send axon collaterals most abundantly to the striatumBiases in striatal innervation correspond to biases in spinal innervationCSNs represent complex movement sequence informationCorollary motor sequence signals are relayed to both striatal projection pathwayseTOC BlurbNelson, A. et al. detail the organization of corticospinal neurons and their coordinated cell type-specific targets in the dorsolateral striatum and spinal cord. Corticospinal neurons encode both kinematic-related and unrelated signals during motor sequences, and relay this information in a balanced fashion to dichotomous striatal pathways.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3