Distinct evolutionary trajectories in asexual populations through an interplay of their size, resource availability and mutation rates

Author:

Kumawat BhaskarORCID,Bhat RamrayORCID

Abstract

AbstractAsexually reproducing populations of single cells evolve through mutation, natural selection, and genetic drift to enhance their reproductive fitness. The environment provides the contexts that allow and regulate their fitness dynamics. In this work, we used Avida - a digital evolution framework - to uncover the effect of mutation rates, maximum size of the population, and the relative abundance of resources, on evolutionary outcomes in asexually reproducing populations of digital organisms. We observed that over extended simulations, the population evolved predominantly to one of several discrete fitness classes, each with distinct sequence motifs and/or phenotypes. For a low mutation rate, the organisms acquired either of four fitness values through an enhancement in the rate of genomic replication. Evolution at a relatively higher mutation rate presented a more complex picture. While the highest fitness values at a high mutation rate were achieved through enhanced genome replication rates, a suboptimal one was achieved through organisms sharing information relevant to metabolic tasks with each other. The information sharing capacity was vital to fitness acquisition and frequency of the genotype associated with it increased with greater resource levels and maximum population size. In addition, populations optimizing their fitness through such means exhibited a greater degree of genotypic heterogeneity and metabolic activity than those that improved replication rates. Our results reveal a minimal set of conditions for the emergence of interdependence within evolving populations with significant implications for biological systems in appropriate environmental contexts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3