Discretizing clinical information can reduce antibiotic misuse: a game theoretic approach

Author:

Diamant Maya,Baruch Shoham,Kassem Eias,Muhsen Khitam,Samet Dov,Leshno Moshe,Obolski Uri

Abstract

AbstractThe overuse of antibiotics is exacerbating the antibiotic resistance crisis. Since this problem is a classic common-goods dilemma, it naturally lends itself to a game-theoretic analysis. Hence, we designed a model wherein physicians weigh whether antibiotics should be prescribed, given that antibiotic usage depletes its future effectiveness. The physicians’ decisions rely on the probability of a bacterial infection before definitive laboratory results are available. We show that the physicians’ equilibrium decision-rule of antibiotic prescription is not socially optimal. However, we prove that discretizing the information provided to physicians can mitigate the gap between their equilibrium decisions and the social optimum of antibiotic prescription. Despite this problem’s complexity, the effectiveness of the discretization solely depends on the distribution of available information. This is demonstrated on theoretic distributions and a clinical dataset. Our results provide a game-theory based guide for optimal output of current and future decision support systems of antibiotic prescription.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance

2. Zaman, S. Bin et al. A review on antibiotic resistance: alarm bells are ringing. Cureus 9, (2017).

3. Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 12, 3903 (2019).

4. Bennett, J. E. , Dolin, R. & Blaser, M. J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases: 2-Volume Set. 1, (Elsevier Health Sciences, 2014).

5. Association between appropriate empiric antimicrobial therapy and mortality from bloodstream infections in the intensive care unit;J. Infect. Chemother,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3