Single cell 3’UTR analysis identifies changes in alternative polyadenylation throughout neuronal differentiation and in autism

Author:

Göpferich Manuel,George Nikhil Oommen,Muelas Ana Domingo,Bizyn Alex,Pascual Rosa,Fijalkowska Daria,Kalamakis Georgios,Müller Ulrike,Krijgsveld Jeroen,Mendez Raul,Fariñas Isabel,Huber Wolfgang,Anders SimonORCID,Martin-Villalba Ana

Abstract

SUMMARYAutism spectrum disorder (ASD) is a neurodevelopmental disease affecting social behavior. Many of the high-confident ASD risk genes relate to mRNA translation. Specifically, many of these genes are involved in regulation of gene expression for subcellular compartmentalization of proteins1. Cis-regulatory motifs that often localize to 3’- and 5’-untranslated regions (UTRs) offer an additional path for posttranscriptional control of gene expression. Alternative cleavage and polyadenylation (APA) affect 3’UTR length thereby influencing the presence or absence of regulatory elements. However, APA has not yet been addressed in the context of neurodevelopmental disorders. Here we used single cell 3’end sequencing to examine changes in 3’UTRs along the differentiation from neural stem cells (NSCs) to neuroblasts within the adult brain. We identified many APA events in genes involved in neurodevelopment, many of them being high confidence ASD risk genes. Further, analysis of 3’UTR lengths in single cells from ASD and healthy individuals detected longer 3’UTRs in ASD patients. Motif analysis of modulated 3’UTRs in the mouse adult neurogenic lineage and ASD-patients revealed enrichment of the cytoplasmic and polyadenylation element (CPE). This motif is bound by CPE binding protein 4 (CPEB4). In human and mouse data sets we observed co-regulation of CPEB4 and the CPEB-binding synaptic adhesion molecule amyloid beta precursor-like protein 1 (APLP1). We show that mice deficient in APLP1 show aberrant regulation of APA, decreased number of neural stem cells, and autistic-like traits. Our findings indicate that APA is used for control of gene expression along neuronal differentiation and is altered in ASD patients.

Publisher

Cold Spring Harbor Laboratory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3