Object manifold geometry across the mouse cortical visual hierarchy

Author:

Froudarakis EmmanouilORCID,Cohen UriORCID,Diamantaki MariaORCID,Walker Edgar Y.ORCID,Reimer JacobORCID,Berens PhilippORCID,Sompolinsky HaimORCID,Tolias Andreas S.ORCID

Abstract

AbstractDespite variations in appearance we robustly recognize objects. Neuronal populations responding to objects presented under varying conditions form object manifolds and hierarchically organized visual areas untangle pixel intensities into linearly decodable object representations. However, the associated changes in the geometry of object manifolds along the cortex remain unknown. Using home cage training we showed that mice are capable of invariant object recognition. We simultaneously recorded the responses of thousands of neurons to measure the information about object identity across the visual cortex and found that lateral areas LM, LI and AL carry more linearly decodable object information compared to other visual areas. We applied the theory of linear separability of manifolds, and found that the increase in classification capacity is associated with a decrease in the dimension and radius of the object manifold, identifying the key features in the geometry of the population neural code that enable invariant object coding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3