Abstract
AbstractThe mitochondrial electron transport chain (mETC) and F1Fo-ATP synthase are of central importance for energy and metabolism in eukaryotic cells. The Apicomplexa, important pathogens of humans causing diseases such as toxoplasmosis and malaria, depend on their mETC in every known stage of their complicated life cycles. Here, using a complexome profiling proteomic approach, we have characterised theToxoplasmamETC complexes and F1Fo-ATP synthase. We identified and assigned 60 proteins to complexes II, IV and F1Fo-ATP synthase ofToxoplasma, of which 16 have not been identified previously. Notably, our complexome profile elucidates the composition of theToxoplasmacomplex III, the target of clinically used drugs such as atovaquone. We identified two new homologous subunits and two new parasite-specific subunits, one of which is broadly conserved in myzozoans. We demonstrate all four proteins are essential for complex III stability and parasite growth, and show their depletion leads to decreased mitochondrial potential, supporting their role as complex III subunits. Our study highlights the divergent subunit composition of the apicomplexan mETC complexes and sets the stage for future structural and drug discovery studies.Author SummaryApicomplexan parasites, such asToxoplasmaandPlasmodium, cause diseases of global importance, such as toxoplasmosis and malaria. The mitochondrial electron transport chain (mETC) and F1Fo-ATP synthase, which provide the parasite with energy and important metabolites, are essential for parasite function. Here, using a proteomic technique called complexome profiling, we report the composition of theToxoplasmamETC and F1Fo-ATP synthase. In particular, we reveal the compositions of complexes II and III for the first time. Complex III is an important drug target, yet its full protein composition was unknown. We identify new parasite-specific complex III subunits and demonstrate that they are essential for parasite survival and for proper functioning of the mETC. Our study highlights the divergent nature of the apicomplexan mETC and F1Fo-ATP synthase.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献