Abstract
AbstractCurrent malaria control efforts rely significantly on artemisinin combinational therapies which have played massive roles in alleviating the global burden of the disease. Emergence of resistance to artemisinins is therefore, not just alarming but requires immediate intervention points such as development of new antimalarial drugs or improvement of the current drugs through adjuvant or combination therapies. Artemisinin resistance is primarily conferred by Kelch13 propeller mutations which are phenotypically characterised by generalised growth quiescence, altered haemoglobin trafficking and downstream enhanced activity of the parasite stress pathways through the ubiquitin proteasome system (UPS). Previous work on artemisinin resistance selection in a rodent model of malaria, which we and others have recently validated using reverse genetics, has also shown that mutations in deubiquitinating enzymes, DUBs (upstream UPS component) modulates susceptibility of malaria parasites to both artemisinin and chloroquine. The UPS or upstream protein trafficking pathways have, therefore, been proposed to be not just potential drug targets, but also possible intervention points to overcome artemisinin resistance. Here we report the activity of small molecule inhibitors targeting mammalian DUBs in malaria parasites. We show that generic DUB inhibitors can block intraerythrocytic development of malaria parasites in vitro and possess antiparasitic activity in vivo and can be used in combination with additive effect. We also show that inhibition of these upstream components of the UPS can potentiate the activity of artemisinin in vitro as well as in vivo to the extent that ART resistance can be overcome. Combinations of DUB inhibitors anticipated to target different DUB activities and downstream 20s proteasome inhibitors are even more effective at improving the potency of artemisinins than either inhibitors alone providing proof that targeting multiple UPS activities simultaneously could be an attractive approach to overcoming artemisinin resistance. These data further validate the parasite UPS as a target to both enhance artemisinin action and potentially overcome resistance. Lastly, we confirm that DUB inhibitors can be developed into in vivo antimalarial drugs with promise for activity against all of human malaria and could thus further exploit their current pursuit as anticancer agents in rapid drug repurposing programs.Graphical abstract
Publisher
Cold Spring Harbor Laboratory