Trunk Control during Gait: Walking with Wide and Narrow Step Widths Present Distinct Challenges

Author:

Shih Hai-Jung SteffiORCID,Gordon James,Kulig KorneliaORCID

Abstract

AbstractThe active control of the trunk plays an important role in frontal plane gait stability. We characterized trunk control in response to different step widths using a novel feedback system and examined the different effects of wide and narrow step widths as they each present unique task demands. Twenty healthy young adults walked on a treadmill at 1.25 m/s at five prescribed step widths: 0.33, 1.67, 1, 1.33, 1.67 times preferred step width. Motion capture was used to record trunk kinematics, and surface electromyography was used to record longissimus muscle activation bilaterally. Vector coding was used to analyze coordination between pelvis and thorax segments of the trunk. Results showed that while center of mass only varied across step width in the mediolateral direction, trunk kinematics in all three planes were affected by changes in step width. Angular excursions of the trunk segments increased only with wider widths in the transverse plane. Thorax-pelvis kinematic coordination was affected more by wider widths in transverse plane and by narrower widths in the frontal plane. Peak longissimus activation and bilateral co-activation increased as step widths became narrower. As a control task, walking with varied step widths is not simply a continuum of adjustments from narrow to wide. Rather, narrowing step width and widening step width from the preferred width represent distinct control challenges that are managed in different ways. This study provides foundation for future investigations on the trunk during gait in different populations.

Publisher

Cold Spring Harbor Laboratory

Reference36 articles.

1. Effects of narrow base gait on mediolateral balance control in young and older adults

2. Effects of constrained trunk movement on frontal plane gait kinematics

3. Normal coupling behavior between axial rotation and lateral bending in the lumbar spine – biomed 2009;Biomed. Sci. Instrum,2009

4. Active control of lateral balance in human walking

5. Bernstein, N. , 1967. The Co-ordination and Regulation of Movements. Pergamon Press, Oxford (UK).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3