Abstract
ABSTRACTWe investigated the initial stages of head development using a new method to randomly label chicken epiblast cells with enhanced green fluorescent protein, and tracking the labeled cells. This analysis was combined with grafting mCherry-expressing quail nodes, or node-derived anterior mesendoderm (AME). These live imagings provided a new conception of the cellular mechanisms regulating brain and head ectoderm development. Virtually all anterior epiblast cells are bipotent for the development into the brain or head ectoderm. Their fate depends on the positioning after converging to the AME. When two AME tissues exist following the ectopic node graft, the epiblast cells converge to the two AME positions and develop into two brain tissues. The anterior epiblast cells bear gross regionalities that already correspond to the forebrain, midbrain, and hindbrain axial levels shortly after the node is formed. Therefore, brain portions that develop with the graft-derived AME are dependent on graft positioning.
Publisher
Cold Spring Harbor Laboratory