PP2A-Cdc55 is responsible for mitotic arrest in DNA re-replicating cells in S. cerevisiae

Author:

Khondker Shoily,Ikui Amy E.ORCID

Abstract

AbstractThe cell cycle is an ordered process in which cells replicate their DNA in S-phase and divide them into two identical daughter cells in mitosis. DNA replication takes place only once per cell cycle to preserve genome integrity, which is tightly regulated by Cyclin Dependent Kinase (CDK). Formation of the pre-replicative complex, a platform for origin licensing, is inhibited through CDK-dependent phosphorylation. Failure of this control leads to re-licensing, re-replication and DNA damage. Eukaryotic cells have evolved surveillance mechanisms to maintain genome integrity, termed cell cycle checkpoints. It has been shown that the DNA damage checkpoint is activated upon the induction of DNA re-replication and arrests cell cycle in mitosis in S. cerevisiae. In this study, we show that PP2A-Cdc55 is responsible for the metaphase arrest induced by DNA re-replication, leading to dephosphorylation of APC component, Exclusion of Cdc55 from the nucleus bypassed the mitotic arrest and resulted in enhanced cell lethality in re-replicating cells. The metaphase arrest in re-replication cells was retained in the absence of Mad2, a key component of the spindle assembly checkpoint. Moreover, re-replicating cells showed the same rate of DNA damage induction in the presence or absence of Cdc55. These results indicate that PP2A-Cdc55 maintains metaphase arrest upon DNA re-replication and DNA damage through APC inhibition.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3