Automated and unbiased classification of motor neuron phenotypes with single cell resolution in ALS tissue

Author:

Hagemann Cathleen,Tyzack Giulia E.ORCID,Taha Doaa M.,Devine HelenORCID,Greensmith LindaORCID,Newcombe JiaORCID,Patani RickieORCID,Serio AndreaORCID,Luisier RaphaëlleORCID

Abstract

SUMMARYHistopathological analysis of tissue sections is an invaluable resource in neurodegeneration research. Importantly, cell-to-cell variation in both the presence and severity of a given phenotype is however a key limitation of this approach, reducing the signal to noise ratio and leaving unresolved the potential of single-cell scoring for a given disease attribute. Here, we developed an image processing pipeline for automated identification and profiling of motor neurons (MNs) in amyotrophic lateral sclerosis (ALS) pathological tissue sections. This approach enabled unbiased analysis of hundreds of cells, from which hundreds of features were readily extracted. Next by testing different machine learning methods, we automated the identification of phenotypically distinct MN subpopulations in VCP- and SOD1-mutant transgenic mice, revealing common aberrant phenotypes in cellular shape. Additionally we established scoring metrics to rank cells and tissue samples for both disease probability and severity. Finally, by adapting this methodology to human post-mortem tissue analysis, we validated our core finding that morphological descriptors strongly discriminate ALS from control healthy tissue at the single cell level. In summary, we show that combining automated image processing with machine learning methods substantially improves the speed and reliability of identifying phenotypically diverse MN populations. Determining disease presence, severity and unbiased phenotypes at single cell resolution might prove transformational in our understanding of ALS and neurodegenerative diseases more broadly.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3