Machine learning reveals time-varying microbial predictors with complex effects on glucose regulation

Author:

Aasmets Oliver,Lüll Kreete,Lang Jennifer M.,Pan Calvin,Kuusisto Johanna,Fischer Krista,Laakso Markku,Lusis Aldons J.,Org ElinORCID

Abstract

AbstractThe incidence of type 2 diabetes (T2D) has been increasing globally and a growing body of evidence links type 2 diabetes with altered microbiota composition. Type 2 diabetes is preceded by a long pre-diabetic state characterized by changes in various metabolic parameters. We tested whether the gut microbiome could have predictive potential for T2D development during the healthy and pre-diabetic disease stages. We used prospective data of 608 well-phenotyped Finnish men collected from the population-based Metabolic Syndrome In Men (METSIM) study to build machine learning models for predicting continuous glucose and insulin measures in a shorter (1.5 year) and longer (4.5 year) period. Our results show that the inclusion of gut microbiome improves prediction accuracy for modelling T2D associated parameters such as glycosylated hemoglobin and insulin measures. We identified novel microbial biomarkers and described their effects on the predictions using interpretable machine learning techniques, which revealed complex linear and non-linear associations. Additionally, the modelling strategy carried out allowed us to compare the stability of model performances and biomarker selection, also revealing differences in short-term and long-term predictions. The identified microbiome biomarkers provide a predictive measure for various metabolic traits related to T2D, thus providing an additional parameter for personal risk assessment. Our work also highlights the need for robust modelling strategies and the value of interpretable machine learning.ImportanceRecent studies have shown a clear link between gut microbiota and type 2 diabetes. However, current results are based on cross-sectional studies that aim to determine the microbial dysbiosis when the disease is already prevalent. In order to consider microbiome as a factor in disease risk assessment, prospective studies are needed. Our study is the first study that assesses the gut microbiome as a predictive measure for several type 2 diabetes associated parameters in a longitudinal study setting. Our results revealed a number of novel microbial biomarkers that can improve the prediction accuracy for continuous insulin measures and glycosylated hemoglobin levels. These results make the prospect of using microbiome in personalized medicine promising.

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. World Health Organization. 2016. Global Report on Diabetes. Isbn.

2. Gurung M , Li Z , You H , Rodrigues R , Jump DB , Morgun A , Shulzhenko N. 2020. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine.

3. Wang J , Qin J , Li Y , Cai Z , Li S , Zhu J , Zhang F , Liang S , Zhang W , Guan Y , Shen D , Peng Y , Zhang D , Jie Z , Wu W , Qin Y , Xue W , Li J , Han L , Lu D , Wu P , Dai Y , Sun X , Li Z , Tang A , Zhong S , Li X , Chen W , Xu R , Wang M , Feng Q , Gong M , Yu J , Zhang Y , Zhang M , Hansen T , Sanchez G , Raes J , Falony G , Okuda S , Almeida M , Lechatelier E , Renault P , Pons N , Batto JM , Zhang Z , Chen H , Yang R , Zheng W , Li S , Yang H , Ehrlich SD , Nielsen R , Pedersen O , Kristiansen K , Wang J. 2012. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature.

4. Karlsson FH , Tremaroli V , Nookaew I , Bergström G , Behre CJ , Fagerberg B , Nielsen J , Bäckhed F. 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature.

5. Allin KH , Tremaroli V , Caesar R , Jensen BAH , Damgaard MTF , Bahl MI , Licht TR , Hansen TH , Nielsen T , Dantoft TM , Linneberg A , Jørgensen T , Vestergaard H , Kristiansen K , Franks PW , Hansen T , Bäckhed F , Pedersen O. 2018. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3