KRSA: Network-based Prediction of Differential Kinase Activity from Kinome Array Data

Author:

DePasquale Erica A. K.ORCID,Alganem Khaled,Bentea Eduard,Nawreen Nawshaba,McGuire Jennifer L.,Naji Faris,Hilhorst Riet,Meller Jaroslaw,McCullumsmith Robert E.

Abstract

AbstractMotivationPhosphorylation by serine-threonine and tyrosine kinases is critical for determining protein function. Array-based approaches for measuring multiple kinases allow for the testing of differential phosphorylation between conditions for distinct sub-kinomes. While bioinformatics tools exist for processing and analyzing such kinome array data, current open-source tools lack the automated approach of upstream kinase prediction and network modeling. The presented tool, alongside other tools and methods designed for gene expression and protein-protein interaction network analyses, help the user better understand the complex regulation of gene and protein activities that forms biological systems and cellular signaling networks.ResultsWe present the Kinome Random Sampling Analyzer (KRSA), a web-application for kinome array analysis. While the underlying algorithm has been experimentally validated in previous publications, we tested the full KRSA application on dorsolateral prefrontal cortex (DLPFC) in male (n=3) and female (n=3) subjects to identify differential phosphorylation and upstream kinase activity. Kinase activity differences between males and females were compared to a previously published kinome dataset (11 female and 7 male subjects) which showed similar patterns to the global phosphorylation signal. Additionally, kinase hits were compared to gene expression databases for in silico validation at the transcript level and showed differential gene expression of kinases.Availability and implementationKRSA as a web-based application can be found at http://bpg-n.utoledo.edu:3838/CDRL/KRSA/. The code and data are available at https://github.com/kalganem/KRSA.Supplementary informationSupplementary data are available online.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3