The contributions from the progenitor genomes of the mesopolyploid Brassiceae are evolutionarily distinct but functionally compatible

Author:

Hao YueORCID,Mabry Makenzie E.ORCID,Edger Patrick P.ORCID,Freeling MichaelORCID,Zheng Chunfang,Jin Lingling,VanBuren RobertORCID,Colle MariviORCID,An HongORCID,Abrahams R. ShawnORCID,Washburn Jacob D.ORCID,Qi Xinshuai,Barry KerrieORCID,Daum Christopher,Shu ShengqiangORCID,Schmutz JeremyORCID,Sankoff DavidORCID,Barker Michael S.ORCID,Lyons EricORCID,Pires J. ChrisORCID,Conant Gavin C.ORCID

Abstract

AbstractThe members of the tribe Brassiceae share a whole genome triplication (WGT), and one proposed model for its formation is a “two-step” pair of hybridizations producing hexaploid descendants. However, evidence for this model is incomplete, and the evolutionary and functional constraints that drove evolution after the hexaploidy are even less understood. Here we report a new genome sequence of Crambe hispanica, a species sister to most sequenced Brassiceae. Using this new genome and three others that share the hexaploidy, we traced the history of gene loss after the WGT using POInT (the Polyploidy Orthology Inference Tool). We confirm the two-step formation model and infer that there was a significant temporal gap between those two allopolyploidizations, with about a third of the gene losses from the first two subgenomes occurring prior to the arrival of the third. We also, for the 90,000 individual genes in our study, make parental “subgenome” assignments, inferring, with measured uncertainty, which of the progenitor genomes of the allohexaploidy each gene derives from. We further show that each subgenome has a statistically distinguishable rate of homoeolog losses. There is little indication of functional distinction between the three subgenomes: the individual subgenomes show no patterns of functional enrichment, no excess of shared protein-protein or metabolic interactions between their members, and no biases in their likelihood of having experienced a recent selective sweep. We propose a “mix and match” model of allopolyploidy, where subgenome origin drives homoeolog loss propensities but where genes from different subgenomes function together without difficulty.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3