Abstract
AbstractBackgroundThe relationship between several intriguing perinatal phenomena, namely, modal, optimal, and relative birthweight and gestational age, remains poorly understood, especially the mechanism by which relative birthweight and gestational age resolve the paradox of intersecting perinatal mortality curves.MethodsBirthweight and gestational age distributions and birthweight- and gestational age-specific perinatal death rates of low- and high-risk cohorts in the United States, 2004-2015, were estimated using births-based and extended fetuses-at-risk formulations. The relationships between these births-based distributions and rates, and the first derivatives of fetuses-at-risk birth and perinatal death rates were examined in order to assess how the rate of change in fetuses-at-risk rates affects gestational age distributions and births-based perinatal death rate patterns.ResultsModal gestational age typically exceeded optimal gestational age because both were influenced by the peak in the first derivative of the birth rate, while optimal gestational age was additionally influenced by the point at which the first derivative of the fetuses-at-risk perinatal death rate showed a sharp increase in late gestation. The clustering and correlation between modal and optimal gestational age within cohorts, the higher perinatal death rate at optimal gestational age among higher-risk cohorts, and the symmetric left-shift in births-based gestational age-specific perinatal death rates in higher-risk cohorts explained how relative gestational age resolved the paradox of intersecting perinatal mortality curves.ConclusionsChanges in the first derivative the fetuses-at-risk birth and perinatal death rates underlie several births-based perinatal phenomena and this explanation further unifies the fetuses-at-risk and births-based models of perinatal death.
Publisher
Cold Spring Harbor Laboratory