Abstract
ABSTRACTMany specialized cells use unconventional strategies of cytoskeletal control. Nematode spermatocytes discard their actin and tubulin following meiosis, and instead employ the regulated assembly/disassembly of the Major Sperm Protein (MSP) to drive sperm motility. However prior to the meiotic divisions, MSP is effectively sequestered as it exclusively assembles into paracrystalline structures called fibrous bodies (FBs). The accessory proteins that direct this sequestration process have remained mysterious. This study reveals SPE-18 as an intrinsically disordered protein that that is essential for MSP assembly within FBs. Inspe-18mutant spermatocytes, MSP remains cytosolic, and the cells arrest in meiosis. In wildtype spermatocytes, SPE-18 localizes to pre-FB complexes and functions with the kinase SPE-6 to recruit MSP. Changing patterns of SPE-18 localization revealed unappreciated complexities in FB maturation. Later, within newly individualized spermatids, SPE −18 is rapidly lost, yet SPE-18 loss alone is insufficient for MSP disassembly. Our findings reveal an alternative strategy for sequestering cytoskeletal elements, not as monomers but in localized, bundled polymers. Additionally, these studies provide an important example of disordered proteins promoting ordered cellular structures.Summary StatementIntrinsically disordered proteins are increasingly recognized as key regulators of localized cytoskeletal assembly. Expanding that paradigm, SPE-18 localizes MSP assembly withinC. elegansspermatocytes.
Publisher
Cold Spring Harbor Laboratory