The intrinsically disordered protein SPE-18 promotes localized assembly of the major sperm protein inC. elegansspermatocytes

Author:

Price Kari L.ORCID,Presler MarcORCID,Uyehara Christopher M.ORCID,Shakes Diane C.ORCID

Abstract

ABSTRACTMany specialized cells use unconventional strategies of cytoskeletal control. Nematode spermatocytes discard their actin and tubulin following meiosis, and instead employ the regulated assembly/disassembly of the Major Sperm Protein (MSP) to drive sperm motility. However prior to the meiotic divisions, MSP is effectively sequestered as it exclusively assembles into paracrystalline structures called fibrous bodies (FBs). The accessory proteins that direct this sequestration process have remained mysterious. This study reveals SPE-18 as an intrinsically disordered protein that that is essential for MSP assembly within FBs. Inspe-18mutant spermatocytes, MSP remains cytosolic, and the cells arrest in meiosis. In wildtype spermatocytes, SPE-18 localizes to pre-FB complexes and functions with the kinase SPE-6 to recruit MSP. Changing patterns of SPE-18 localization revealed unappreciated complexities in FB maturation. Later, within newly individualized spermatids, SPE −18 is rapidly lost, yet SPE-18 loss alone is insufficient for MSP disassembly. Our findings reveal an alternative strategy for sequestering cytoskeletal elements, not as monomers but in localized, bundled polymers. Additionally, these studies provide an important example of disordered proteins promoting ordered cellular structures.Summary StatementIntrinsically disordered proteins are increasingly recognized as key regulators of localized cytoskeletal assembly. Expanding that paradigm, SPE-18 localizes MSP assembly withinC. elegansspermatocytes.

Publisher

Cold Spring Harbor Laboratory

Reference71 articles.

1. The presenilin protein family member SPE-4 localizes to an ER/Golgi derived organelle and is required for proper cytoplasmic partitioning during Caenorhabditis elegans spermatogenesis;J Cell Sci,1998

2. 20S proteasomes and protein degradation “by default”

3. Gain-of-function mutations of fem-3, a sexdetermination gene in Caenorhabditis elegans;Genetics,1987

4. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites

5. Microtubule-Associated Proteins: Structuring the Cytoskeleton

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3