A mating-induced reproductive gene promotes Anopheles tolerance to Plasmodium falciparum infection

Author:

Marcenac Perrine,Shaw W. Robert,Kakani Evdoxia G.,Mitchell Sara N.,South Adam,Werling Kristine,Marrogi Eryney,Abernathy Daniel G.,Yerbanga Rakiswendé Serge,Dabiré Roch K.,Diabaté Abdoulaye,Lefèvre Thierry,Catteruccia Flaminia

Abstract

AbstractAnopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors—Anopheles gambiae and Anopheles stephensi—is not affected by infection with Plasmodium falciparum, demonstrating that these human malaria parasites do not inflict reproductive costs to their natural mosquito hosts. Additionally, parasite development is not impacted by mating status. However, in field studies using different P. falciparum isolates in Anopheles coluzzii, we find that Mating-Induced Stimulator of Oogenesis (MISO), a female reproductive gene strongly induced after mating by the sexual transfer of the steroid hormone 20-hydroxyecdysone (20E), protects females from incurring fecundity costs to infection. MISO-silenced females produce fewer eggs as they become increasingly infected with P. falciparum, while parasite development is not impacted by this gene silencing. Interestingly, previous work had shown that sexual transfer of 20E has specifically evolved in Cellia species of the Anopheles genus, driving the co-adaptation of MISO. Our data therefore suggest that evolution of male-female sexual interactions may have promoted Anopheles tolerance to P. falciparum infection in the Cellia subgenus, which comprises the most important malaria vectors.Author summaryPlasmodium falciparum, the deadliest form of human malaria, is transmitted when female Anopheles mosquitoes bite people and take a blood meal in order to develop eggs. To date, it is still poorly understood whether Anopheles mosquitoes that get infected with P. falciparum suffer fitness costs. Here, we find that the number of eggs produced by Anopheles gambiae and Anopheles stephensi females is not affected by P. falciparum infection, and that the mating status of the mosquitoes does not impact the parasite. However, in field experiments infecting a related species, Anopheles coluzzii, with P. falciparum using blood from donors in Burkina Faso, we find that interfering with the expression of a gene normally triggered by the sexual transfer of the steroid hormone 20-hydroxyecdysone induces increasing costs to egg development as females become more infected with P. falciparum, with no impacts on the parasite. The results of our study suggest that pathways triggered by mating may help Anopheles prevent reproductive costs associated with P. falciparum infection, providing new insights into evolutionary strategies adopted by anophelines in the face of a longstanding association with Plasmodium parasites.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3