Integrated Bioinformatics Analysis Deciphering the microRNA Regulation in Protein-Protein Interaction Network in Lung Adenocarcinoma

Author:

Sengupta PratyayORCID,Saha Sayoni,Maji Moumita,Ghosh Monidipa

Abstract

AbstractBackgroundThe architecture of the protein-protein interaction (PPI) network in any organism relies on their gene expression signature. microRNAs (miRNAs) have recently emerged as major post transcriptional regulators that control PPI by targeting mainly untranslated regions of the gene encoding proteins. Here, we aimed to unveil the role of miRNAs in the PPI network for identifying potential molecular targets for lung adenocarcinoma (LUAD).Materials and methodsThe expression profiles of miRNAs and mRNAs were collected from the NCBI Gene Expression Omnibus (GEO) database (GSE74190 and GSE116959). Abnormally expressed mRNAs from the data were appointed to construct a PPI network and hence incorporated with the miRNA-mRNA regulatory network. The miRNAs and mRNAs in this network were subjected to functional enrichment. Through the network analysis, hubs were identified and their mutation rate and probability of cooccurrence were calculated.ResultsWe identified 17 miRNAs and 429 mRNAs signature for differentially altered transcriptome in LUAD. The combined miRNA–mRNA regulatory network exhibited scale-free characteristics. Network analysis showed 5 miRNA (including hsa-miR-486-5p, hsa-miR-200b-5p, and hsa-miR-130b-5p) and 10 mRNA (including ASPM, CCNB1, TTN, TPX2, and BIRC5) which expressively contribute in the LUAD. We further investigated the hub genes and noticed that ASPM and TTN had the maximum rate of mutation and possessed a high tendency of cooccurrence in LUAD.ConclusionThis study provides a unique network approach to the exploration of the underlying molecular mechanism in LUAD. Identified mRNAs and miRNAs may therefore, serve as significant prognostic predictors and therapeutic targets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3