Scaling laws of graphs of 3D protein structures

Author:

Pražnikar JureORCID

Abstract

AbstractThe application of graph theory in structural biology offers an alternative means of studying 3D models of large macromolecules, such as proteins. However, basic structural parameters still play an important role in the description of macromolecules. For example, the radius of gyration, which scales with exponent ~0.4, provides quantitative information about the compactness of the protein structure. In this study, we combine two proven methods, the graph-theoretical and the fundamental scaling laws, to study 3D protein models.This study shows that the mean node degree of the protein graphs, which scales with exponent 0.038, is scale-invariant. In addition, proteins that differ in size have a highly similar node degree distribution, which peaks at node degree 7, and additionally conforms to the same statistical properties at any scale. Linear regression analysis showed that the graph parameters (radius, diameter and mean eccentricity) can explain up to 90% of the total radius of gyration variance. Thus, the graph parameters of radius, diameter and mean eccentricity scale with the same exponent as the radius of gyration. The main advantage of graph eccentricity compared to the radius of gyration is that it can be used to analyse the distribution of the central and peripheral amino acids/nodes of the macromolecular structure. The central nodes are hydrophobic amino acids (Val, Leu, Ile, Phe), which tend to be buried, while the peripheral nodes are more hydrophilic residues (Asp, Glu, Lys). Furthermore, it has been shown that the number of central and peripheral nodes is more related to the fold of the protein than to the protein length.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3