Abstract
AbstractBioengineering aimed at producing complex and valuable plant specialized metabolites in microbial hosts requires efficient uptake of precursor molecules and export of final products to alleviate toxicity and feedback inhibition. Plant genomes encode a vast repository of transporters of specialized metabolites that— due to lack of molecular knowledge—remains largely unexplored in bioengineering. Using phlorizin as a case study—an anti-diabetic and anti-cancerous flavonoid from apple—we demonstrate that brute-force functional screening of plant transporter libraries in Xenopus oocytes is a viable approach to identify transporters for bioengineering. By screening 600 Arabidopsis transporters, we identified and characterized purine permease 8 (AtPUP8) as a bidirectional phlorizin transporter. Functional expression in the plasma membrane of a phlorizin-producing yeast strain increased phlorizin titer by more than 80 %. This study provides a generic approach for identifying plant exporters of specialized metabolites and demonstrates the potential of transport-engineering for improving yield in bioengineering approaches.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献