Abstract
AbstractThe rearing habitat for juvenile Chinook Salmon (Oncorhynchus tshawytscha) in California, the southernmost portion of their range, has drastically declined throughout the past century. Recently, through cooperative agreements with diverse stakeholders, winter-flooded agricultural rice fields in California’s Central Valley have emerged as promising habitat for rearing juvenile Chinook Salmon. From 2013 to 2016, we conducted a series of experiments examining methods for rearing fall-run Chinook Salmon on winter-flooded rice fields in the Yolo Bypass, a modified floodplain of the Sacramento River in California. These included: 1) influence of field substrate differences from previous season rice harvest; 2) effects of depth refugia from avian predators (trenches); 3) field drainage methods to promote efficient egress of fish; and 4) in-field salmon survivorship over time. Zooplankton (fish food) in the winter-flooded rice fields were 53-150x more abundant when directly compared to the adjacent Sacramento River. Correspondingly, somatic growth rates of juvenile hatchery-sourced fall-run Chinook Salmon stocked in rice fields were two to five times greater versus fish in the adjacent Sacramento River. Post-harvest field substrate treatments had little effect on the lower trophic food web and had an insignificant effect on growth rates of in-field salmon. Though depth refugia did not directly increase survival, it buffered maximum water temperatures in the trenches and facilitated outmigration from fields during draining. Rapid field drainage methods yielded the highest survival and were preferable to drawn-out drainage methods. High initial mortality immediately after stocking was observed in the survival over time experiment with stable and high survival after the first week. In-field survival ranged 7.4–61.6% and increased over the course of the experiments. Despite coinciding with the most extreme drought in California’s recorded history, which elevated water temperatures and reduced the regional extent of adjacent flooded habitats which concentrated avian predators, the adaptive research framework enabled incremental improvements in design to increase survival. The abundance of food resources and exceptionally high growth rates observed during these experiments illustrate the benefits associated with reconciling off-season agricultural land use with fish conservation practices. Without any detriment to flood control or agricultural yield, there is great promise for reconciliation ecology between agricultural floodplains and endangered fish conservation where minor alterations to farm management practices could greatly enhance the effectiveness of fish conservation outcomes.
Publisher
Cold Spring Harbor Laboratory
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献