Functional drug susceptibility testing based on biophysical measurements predicts patient outcome in glioblastoma patient-derived neurosphere models

Author:

Stockslager Max A.ORCID,Malinowski Seth,Touat Mehdi,Yoon Jennifer C.,Geduldig Jack,Mirza Mahnoor,Kim Annette S.ORCID,Wen Patrick Y.,Chow Kin-Hoe,Ligon Keith L.ORCID,Manalis Scott R.ORCID

Abstract

AbstractFunctional precision medicine aims to match each cancer patient to the most effective treatment by performing ex vivo drug susceptibility testing on the patient’s tumor cells. Despite promising feasibility studies, functional drug susceptibility testing is not yet used in clinical oncology practice to make treatment decisions. Often, functional testing approaches have measured ex vivo drug response using metabolic assays such as CellTiter-Glo, which measures ATP as a proxy for numbers of viable cells. As a complement to these existing metabolic drug response assays, we evaluated whether biophysical assays based on cell mass (the suspended microchannel resonator mass assay) or size as measured by microscopy (the IncuCyte assay) could be used as a readout for ex vivo drug response. Using these biophysical assays, we profiled the ex vivo temozolomide responses of a retrospective cohort of 70 glioblastoma patient-derived neurosphere models with matched clinical outcomes and found that both biophysical assays predicted patients’ overall survival with similar power to MGMT promoter methylation, the clinical gold standard biomarker for predicting temozolomide response in glioblastoma. These findings suggest that biophysical assays could be a useful complement to existing metabolic approaches as “universal biomarkers” to measure sensitivity or resistance to anti-cancer drugs with a wide variety of cytostatic or cytotoxic mechanisms.One-sentence summaryBy using biophysical assays to perform ex vivo drug susceptibility testing on 70 glioblastoma patient-derived neurosphere models, we find that functional testing predicts the duration that patients survive when treated with temozolomide, the standard of care chemotherapy.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3