Deep learning to decipher the progression and morphology of axonal degeneration

Author:

Palumbo AlexORCID,Grüning PhilippORCID,Landt Svenja KimORCID,Heckmann Lara EleenORCID,Bartram Luisa,Pabst AlessaORCID,Flory CharlotteORCID,Ikhsan MaulanaORCID,Pietsch Sören,Schulz Reinhard,Kren Christopher,Koop Norbert,Boltze JohannesORCID,Mamlouk Amir MadanyORCID,Zille MariettaORCID

Abstract

AbstractBackgroundAxonal degeneration (AxD) is a pathological hallmark of many neurodegenerative diseases. Deciphering the morphological patterns of AxD will help to understand the underlying mechanisms and to develop effective therapeutic interventions. Here, we evaluated the progression of AxD in cortical neurons using a novel microfluidic device in combination with a deep learning tool, the EntireAxon, that we developed for the enhanced-throughput analysis of AxD on microscopic images.ResultsThe EntireAxon convolutional neural network sensitively and specifically segmented the features of AxD, including axons, axonal swellings, and axonal fragments, and its performance exceeded that of human expert raters. In an in vitro model of AxD in hemorrhagic stroke induced by the hemolysis product hemin, we detected the concentration- and time-dependent degeneration of axons leading to a decrease in axon area, while the axonal swelling and axonal fragment area increased. Time course analysis revealed that axonal swellings preceded axon fragmentation, suggesting that swellings may be reliable predictors of AxD. Using a recurrent neural network, we further identified four morphological patterns of AxD (granular, retraction, swelling, and transport degeneration) in cortical axons subjected to hemin.ConclusionsThese findings indicate a morphological heterogeneity of AxD under pathophysiologic conditions. The combination of the microfluidic device with the EntireAxon deep learning tool enable the systematic analysis of AxD but also unravel a so far unknown intricacy in which AxD can occur in a disease context.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3