Timing HIV infection with nonlinear viral dynamics

Author:

Reeves DanielORCID,Rolland MorganeORCID,Dearlove Bethany LORCID,Li Yifan,Robb MerlinORCID,Schiffer Joshua TORCID,Gilbert PeterORCID,Cardozo-Ojeda E Fabian,Mayer BryanORCID

Abstract

AbstractIn HIV prevention trials, precise identification of infection time is critical to quantify drug efficacy but difficult to estimate as trials may have relatively sparse visit schedules. The last negative visit does not guarantee a boundary on infection time because viral nucleic acid is not present in the blood during early infection. Here, we developed a framework that combines stochastic and deterministic within-host mathematical modeling of viral dynamics accounting for the early unobservable viral load phase until it reaches a high chronic set point. The infection time estimation is based on a population non-linear mixed effects (pNLME) framework that includes the with-in host modeling. We applied this framework to viral load data from the RV217 trial and found a parsimonious model capable of recapitulating the viral loads. When adding the stochastic and deterministic portion of the best model, the estimated infection time for the RV217 data had an average of 2 weeks between infecting exposure and first positive. We assessed the sensitivity of the infection time estimation by conducting in silico studies with varying viral load sampling schemes before and after infection. pNLME accurately estimates infection times for a daily sampling scheme and is fairly robust to sparser schemes. For a monthly sampling scheme before and after first positive bias increases to -7 days. For pragmatic trial design, we found sampling weekly before and monthly after first positive allows accurate pNLME estimation. Our estimates can be used in parallel with other approaches that rely on viral sequencing, and because the model is mechanistic, it is primed for future application to infection timing for specific interventions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3