Dynamics of the N-terminal domain of SARS-CoV-2 nucleocapsid protein drives dsRNA melting in a counterintuitive tweezer-like mechanism

Author:

Caruso Ícaro P.ORCID,Sanches KarolineORCID,Da Poian Andrea T.ORCID,Pinheiro Anderson S.ORCID,Almeida Fabio C. L.ORCID

Abstract

ABSTRACTThe N protein of betacoronaviruses is responsible for nucleocapsid assembly and other essential regulatory functions. Its N-terminal domain (NTD) interacts and melts the double-stranded transcriptional regulatory sequences (dsTRS), regulating the discontinuous subgenome transcription process. Here, we used molecular dynamics (MD) simulations to study the binding of SARS-CoV-2 N-NTD to non-specific (NS) and TRS dsRNAs. We probed dsRNAs’ Watson and Crick (WC) base-pairing over 25 replicas of 100 ns MD simulations, showing that only one N-NTD of dimeric N is enough to destabilize dsRNAs, initiating melting. N-NTD dsRNA destabilizing activity was more efficient for dsTRS than dsNS. N-NTD dynamics, especially a tweezer-like motion of β2-β3 and 2-β5 loops, played a key role in WC base-pairing destabilization. Based on experimental information available in the literature, we constructed kinetics models for N-NTD-mediated dsRNA melting. Our results support a 1:1 stoichiometry (N-NTD:dsRNA), matching MD simulations and raising different possibilities for N-NTD action: (i) two N-NTDs of dimeric N would act independently, increasing efficiency; (ii) two N-NTDs of dimeric N would bind to two different RNA sites, bridging distant regions of the genome; and (iii) monomeric N would be active, opening up the possibility of a regulatory dissociation event.IMPORTANCECoronaviruses are among the largest positive-sense RNA viruses. They display a unique discontinous transcription mechanism, involving N protein as a major player. The N-NTD promote the dsRNA melting releasing the nascent sense negative strand via a poorly known mechanism of action. It specifically recognizes the body TRS conserved RNA motif located at the 5’ end of each ORF. N protein has the ability to transfer the nascent RNA strand to the leader TRS. The mechanism is essential and one single mutation at the RNA binding site of the N-NTD impairs the viral replication. Here, we describe a counterintuitive mechanism of action of N-NTD based on molecular dynamics simulation and kinetic modelling of the experimental melting activity of N-NTD. This data impacts directly in the understanding of the way N protein acts in the cell and will guide future experiments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3