Pre-existing intratumoral CD8 T cells substantially contribute to control tumors following therapeutic anti-CD40 and polyI:C based vaccination

Author:

Stevens Aaron D.,Bullock Timothy N.J.ORCID

Abstract

ABSTRACTBackgroundDendritic cells are potently activated by the synergistic action of CD40 stimulation in conjunction with signaling through toll like receptors, subsequently activating antigen specific T cells. Cancer vaccines targeting the activation of dendritic cells in this manner show promise in murine models and are being developed for human cancer patients. While vaccine efficacy has been established, further investigation is needed to understand the mechanism of tumor control and how vaccination alters tumor infiltrating immune cells.MethodsMice bearing established murine melanoma tumors were vaccinated with agonist anti-CD40, polyI:C, and tumor antigen. Intratumoral T cell numbers, differentiation state, proliferation, and survival were assessed by flow cytometry. T cell effector function was measured both within the tumor and ex vivo by flow cytometry. T cell trafficking was blocked to examine changes to intratumoral T cells present at the time of vaccination.ResultsVaccination led to increased intratumoral T cell numbers and delayed tumor growth. Expansion of T cells and tumor control did not require trafficking of T cells from the periphery. The increase in intratumoral T cells was associated with an acute burst in proliferation but not changes in viability. Intratumoral T cells had lower PD-1 and Eomes expression but were less functional after vaccination on a per cell basis. However, the increased intratumoral T cell numbers yielded increased effector T cells per tumor.ConclusionsPre-infiltrated CD8 T cells are responsive to CD40/TLR-mediated vaccination and sufficient for vaccination to delay tumor growth when additional T cell trafficking is blocked. This indicates that the existing T cell response and intratumoral DC could be critical for vaccination efficacy. This also suggests that circulating T cells may not be an appropriate biomarker for vaccination efficacy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3