Abstract
ABSTRACTBackgroundDendritic cells are potently activated by the synergistic action of CD40 stimulation in conjunction with signaling through toll like receptors, subsequently activating antigen specific T cells. Cancer vaccines targeting the activation of dendritic cells in this manner show promise in murine models and are being developed for human cancer patients. While vaccine efficacy has been established, further investigation is needed to understand the mechanism of tumor control and how vaccination alters tumor infiltrating immune cells.MethodsMice bearing established murine melanoma tumors were vaccinated with agonist anti-CD40, polyI:C, and tumor antigen. Intratumoral T cell numbers, differentiation state, proliferation, and survival were assessed by flow cytometry. T cell effector function was measured both within the tumor and ex vivo by flow cytometry. T cell trafficking was blocked to examine changes to intratumoral T cells present at the time of vaccination.ResultsVaccination led to increased intratumoral T cell numbers and delayed tumor growth. Expansion of T cells and tumor control did not require trafficking of T cells from the periphery. The increase in intratumoral T cells was associated with an acute burst in proliferation but not changes in viability. Intratumoral T cells had lower PD-1 and Eomes expression but were less functional after vaccination on a per cell basis. However, the increased intratumoral T cell numbers yielded increased effector T cells per tumor.ConclusionsPre-infiltrated CD8 T cells are responsive to CD40/TLR-mediated vaccination and sufficient for vaccination to delay tumor growth when additional T cell trafficking is blocked. This indicates that the existing T cell response and intratumoral DC could be critical for vaccination efficacy. This also suggests that circulating T cells may not be an appropriate biomarker for vaccination efficacy.
Publisher
Cold Spring Harbor Laboratory