Orphan CpG islands boost the regulatory activity of poised enhancers and dictate the responsiveness of their target genes

Author:

Pachano Tomás,Sánchez-Gaya Víctor,Mariner-Faulí María,Ealo Thais,Asenjo Helena G.,Respuela Patricia,Cruz-Molina Sara,van Ijcken Wilfred F. J.,Landeira David,Rada-Iglesias Álvaro

Abstract

ARTICLECpG islands (CGIs) represent a distinctive and widespread genetic feature of vertebrate genomes, being associated with ∼70% of all annotated gene promoters1. CGIs have been proposed to control transcription initiation by conferring nearby promoters with unique chromatin properties2–4. In addition, there are thousands of distal or orphan CGIs (oCGIs) whose functional relevance and mechanism of action are barely known5–7. Here we show that oCGIs are an essential component of poised enhancers (PEs)8, 9 that boost their long-range regulatory activity and dictate the responsiveness of their target genes. Using a CRISPR/Cas9 knock-in strategy in mESC, we introduced PEs with or without oCGIs within topological associating domains (TADs) harbouring genes with different types of promoters. By evaluating the chromatin, topological and regulatory properties of the engineered PEs, we uncover that, rather than increasing their local activation, oCGIs boost the physical and functional communication between PEs and distally located developmental genes. Furthermore, we demonstrate that developmental genes with CpG rich promoters are particularly responsive to PEs and that such responsiveness depends on the presence of oCGIs. Therefore, our work unveils a novel role for CGIs as genetic determinants of the compatibility between genes and enhancers, thus providing major insights into how developmental gene expression programs are deployed under both physiological and pathological conditions10–12.

Publisher

Cold Spring Harbor Laboratory

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3