Tissue-specific transcription footprinting using RNA PoI DamID (RAPID) inC. elegans

Author:

Gómez-Saldivar Georgina,Osuna-Luque JaimeORCID,Semple Jennifer I.ORCID,Glauser Dominique A.ORCID,Jarriault SophieORCID,Meister PeterORCID

Abstract

AbstractDifferential gene expression across cell types underlies the development and cell physiology in multicellular organisms.C. elegansis a powerful, extensively used model to address these biological questions. A remaining bottleneck relates, however, to the difficulty to obtain comprehensive tissue-specific gene transcription data, since available methods are still challenging to execute and/or require large worm populations. Here, we introduce theRNAPoI DamID(RAPID) approach, in which the Dam methyltransferase is fused to a ubiquitous RNA polymerase subunit in order to create transcriptional footprintsviamethyl marks on the DNA of transcribed genes. To validate the method, we determined the polymerase footprints in whole animals, sorted embryonic blastomeres and in different tissues from intact young adults by driving Dam fusion expression tissue-specifically. We obtained meaningful transcriptional footprints in line with RNA-seq studies in whole animals or specific tissues. To challenge the sensitivity of RAPID and demonstrate its utility to determine novel tissue-specific transcriptional profiles, we determined the transcriptional footprints of the pair of XXX neuroendocrine cells, representing 0.2% of the somatic cell content of the animals. We identified 2362 candidate genes with putatively active transcription in XXX cells, among which the few known markers for these cells. Using transcriptional reporters for a subset of new hits, we confirmed that the majority of them were expressed in XXX and identified novel XXX-specific markers. Taken together, our work establishes RAPID as a valid method for the determination of polymerase footprints in specific tissues ofC. eleganswithout the need for cell sorting or RNA tagging.Article summaryGene expression is a major determinant of cell fate and physiology, yet it is notoriously difficult to characterize in individual cell types for the widely used model systemC. elegans. Here, we introduce a method based on thein vivocovalent modification of DNA by transcribing RNA polymerases to determine genome-wide transcription patterns in single tissues of embryos or young adult animals. We show that the method is able to identify actively transcribed genes in tissues representing down to 0.2% of the somatic cells in adult animals. Additionally, this method can be fully performed in a single laboratory by using third generation sequencing methods (ONT).

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3