Consequences of the divergence of Methionine AdenosylTransferase

Author:

Chouhan Bhanupratap SinghORCID,Gade Madhuri H.,Martinez Desirae,Toledo-Patino Saacnicteh,Laurino PaolaORCID

Abstract

AbstractMethionine adenosyltransferase (MAT), which catalyzes the biosynthesis of S-adenosylmethionine from L-methionine and ATP, is an ancient, highly conserved enzyme present in all three domains of life. Although the MAT enzymes of each domain are believed to share a common ancestor, the sequences of archaeal MATs show a high degree of divergence from the sequences of bacterial and eukaryotic MATs. However, the structural and functional consequences of this sequence divergence are not well understood. Here, we use structural bioinformatics analysis and ancestral sequence reconstruction to highlight the consequences of archaeal MAT divergence. We show that the dimer interface containing the active site, which would be expected to be well conserved across all three domains, diverged considerably between the bacterial/eukaryotic MATs and archaeal MATs. Furthermore, the characterization of reconstructed ancestral archaeal MATs showed that they probably had low substrate specificity which expanded during their evolutionary trajectory hinting towards the observation that all the modern day MAT enzymes from the three-kingdom probably originated from a common specific ancestor and then archaea MATs diverged in sequence, structure and substrate specificity. Altogether, our results show that the archaea MAT is an ideal system for studying an enzyme family which evolved to display high degrees of divergence at the sequence/structural levels and yet are capable of performing the same catalytic reactions as their orthologous counterparts.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3