cFIT: Integration and transfer learning of single cell transcriptomes, illustrated by fetal brain cell development

Author:

Peng Minshi,Li Yue,Wamsley Brie,Wei Yuting,Roeder Kathryn

Abstract

AbstractLarge, comprehensive collections of scRNA-seq data sets have been generated that allow for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these data sets or transfer knowledge from one to the other to better understand cellular identity and functions. Here, we present a simple yet surprisingly effective method named cFIT for capturing various batch effects across experiments, technologies, subjects, and even species. The proposed method models the shared information between various data sets by a common factor space, while allowing for unique distortions and shifts in gene-wise expression in each batch. The model parameters are learned under an iterative non-negative matrix factorization (NMF) framework and then used for synchronized integration from across-domain assays. In addition, the model enables transferring via low-rank matrix from more informative data to allow for precise identification in data of lower quality. Compared to existing approaches, our method imposes weaker assumptions on the cell composition of each individual data set, however, is shown to be more reliable in preserving biological variations. We apply cFIT to multiple scRNA-seq data sets of developing brain from human and mouse, varying by technologies and developmental stages. The successful integration and transfer uncover the transcriptional resemblance across systems. The study helps establish a comprehensive landscape of brain cell type diversity and provides insights into brain development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3