Label-free Isolation and Single Cell Biophysical Phenotyping Analysis of Primary Cardiomyocytes Using Inertial Microfluidics

Author:

Tavassoli HosseinORCID,Rorimpandey Prunella,Kang Young Chan,Carnell Michael,Brownlee Chris,Pimanda John EORCID,Chan Peggy P.Y.ORCID,Chandrakanthan VasheORCID

Abstract

AbstractTo advance our understanding of cardiomyocyte identity and function, we need appropriate tools to isolate pure primary cardiomyocytes. We have developed a label-free method to purify viable cardiomyocytes from mouse neonatal hearts using a simple inertial microfluidics biochip. Cardiomyocytes were sorted from neonatal hearts and isolated to >90% purity and their physico-mechanical properties were evaluated using real time deformability cytometry. Purified cardiomyocytes were viable and retained their identity and function as depicted by expression of cardiac specific markers and contractility. Furthermore, we showed that cardiomyocytes have a distinct physico-mechanical phenotype that could be used as an intrinsic biophysical marker to distinguish these cells from other cell types within the heart. Taken together, this cardiomyocyte isolation and phenotyping method could serve as a valuable tool to progress our understanding of cardiomyocyte identity and function, which will ultimately benefit many diagnostic development and cardiac treatment studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3