Author:
Kulkarni Subhash,Saha Monalee,Becker Laren,Wang Zhuolun,Liu Guosheng,Leser Jenna,Kumar Mithra,Bakhshi Shriya,Anderson Matthew,Lewandoski Mark,Slosberg Jared,Nagaraj Sushma,Vincent Elizabeth,Goff Loyal A.,Pasricha Pankaj Jay
Abstract
ABSTRACTThe enteric nervous system (ENS), a collection of neurons contained in the wall of the gut, is of fundamental importance to gastrointestinal and systemic health. According to the prevailing paradigm, the ENS arises from progenitor cells migrating from the embryonic neural crest and remains largely unchanged thereafter. Here, we show that the composition of maturing ENS changes with time, with a decline in neural-crest derived neurons and their replacement by mesoderm-derived neurons. Single cell transcriptomics and immunochemical approaches establish a distinct expression profile of mesoderm-derived neurons. The dynamic balance between the proportions of neurons from these two different lineages in the post-natal gut is dependent on the availability of their respective trophic signals, GDNF-RET and HGF-MET. With increasing age, the mesoderm-derived neurons become the dominant form of neurons in the ENS, a change associated with significant functional effects on intestinal motility. Normal intestinal function in the adult gastrointestinal tract therefore appears to require an optimal balance between these two distinct lineages within the ENS.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献