Abstract
ABSTRACTProduction of ribosomes is an energy-intensive process owing to the intricacy of these massive macromolecular machines. Each human ribosome contains 80 ribosomal proteins and four non-coding RNAs. Accurate assembly requires precise regulation of protein and RNA subunits. In response to stress, the integrated stress response (ISR) rapidly inhibits global translation. How rRNA is coordinately regulated with the rapid inhibition of ribosomal protein synthesis is not known. Here we show that stress specifically inhibits the first step of rRNA processing. Unprocessed rRNA is stored within the nucleolus, and, when stress resolves, it re-enters the ribosome biogenesis pathway. Retention of unprocessed rRNA within the nucleolus aids in the maintenance of this organelle. This response is independent of the ISR or inhibition of cellular translation but represents an independent stress-response pathway that we term Ribosome Biogenesis Stress Response (RiBiSR). Failure to coordinately regulate ribosomal protein translation and rRNA production results in nucleolar fragmentation. Our study unveils a novel stress response pathway that aims at conserving energy, preserving the nucleolus, and prevents further stress by regulation of rRNA processing.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献